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Recursion Theory in Mathematics

By the CTT , we can get negative results on computability and
show that certain problems are not effectively solvable. Such
results can be quite relevant for mathematics.

A good example is Hilbert’s 10th problem: There is no algorithm
for deciding whether an equation p(x1, ..., xn) = 0 with
p ∈ Z[X1, ...,Xn] has an integer solution.

Such results serve at least two purposes: They save us from
unsuccesful attempts and they direct our attention towards the
achievable.
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Infinite Procedures in Mathematics

Turing computations model the idea of computing with integers.
But the actual (usual) mathematical universe contains objects that
cannot be coded by integers. Yet, the concept of mechanical
manipulations of such objects is generally accepted as meaningful.
Also, in mathematics, we often makes use of infinitary construction
methods e.g. in existence proofs and infinitary recursive definitions:
(1) ’Every field has an algebraic closure.’
(2) ’Every integral domain has a field of fractions.’
(3) The definition of the L-hierarchy in set theory.
etc...
’Explicit’ proofs of existence are often preferable to indirect proofs,
as the construction method can be used as a method of
investigating an object by transfinite induction.
This motivates the study of models of infinitary computations that
give a precise meaning to various intuitive notions of infinitary
constructions.
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Effective Mathematics of the Uncountable?

W. Hodges, ‘On the Effectivity of some Field Constructions’:
‘Since the 1930s (Post, Turing) we have known exactly what it is for a
function of natural numbers (...) to be effectively or algorithmically
computable. (...) Now every mathematician is at least vaguely aware of
another quite different notion of ‘effective function’, which has nothing at
all to do with denumerable sets.’

(Goes on to offer as examples the function F0 taking an integral
domain to its field of fractions and the function F1 taking each
ring R with identity to a maximal ideal of R.)
‘In the sense which concerns us (...), function F0 is effective, function F1

is (apparently) highly non-effective (...) To prove theorems, we have to
replace this intuitive notion of effectiveness with something more precise
(...)’
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Ordinal Turing Machines

(Introduced by P. Koepke in 2005)

OTMs have the same ‘software’ as Turing machines: Commands
that, depending on the current state and the symbol currently
read, tell the machine what symbol to write, which new internal
state to assume and where to move the read/write head.
Similarly to Turing machines, they have a tape with cells indexed
with ordinals (each of which can contain a 0 or a 1), a read/write
head, a finite set of internal states, represented by natural numbers
and possibly an oracle.
However, the whole class of ordinals is used in the indexing of the
tape cells of an OTM and its working time can be an arbitrary
ordinal.
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Computations along an ordinal time axis

We keep the way a Turing computation works at successor steps.
But now, what should the state of the machine be at a limit time
λ?
The internal state sλ at time λ, we set sλ := liminf{sι|ι < λ}.
The head position pλ at time λ is pλ := liminf{pι|ι < λ}. Note
that this limit always exists in the ordinals.
If in an OTM-computation the head is moved to the left from a
limit ordinal, it is reset to 0.
Concerning the tape content (tιλ|ι ∈ On) at time λ, we set
tιλ = liminf{tιγ |γ < λ}.
We distinguish two variants: parameter-free OTMs start on a tape
which contains 0 on every cell with infinite index. A
parameter-OTM may have also have a single cell with infinite
index marked with 1.
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Infinite time computability

How an OTM works should now be clear: Simply run through the
program and act according to the commands.
A function f : ω → ω is called OTM-computable iff there is a
OTM-program P that, starting with n on the tape, stops at some
ordinal time α with f (n) on the tape.
A subset x of ω is OTM-computable if its characteristic function
is. As usual, we identify P(ω) with the real numbers.
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COMPUTABILITY
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OTM-computability without ordinal parameters

What is computable by OTMs (with and without parameters)?
Theorem: (Koepke/Seyfferth/Schlicht) There is an ordinal η such
that x is OTM-computable iff x ∈ Lη. η is the supremum of the
parameter-free OTM-halting times.
Definition: An ordinal α is Σ1-fixed iff there is a Σ1-formula φ
such that α is minimal with Lα |= φ.
Theorem: (C.) η = sup{α|α is Σ1 − fixed}. (The relativization to
oracles also holds.)
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OTM-computability with ordinal parameters

Theorem: (Koepke) x ⊆ On is OTM-computable with ordinal
parameters iff x ∈ L. x is OTM-computable with ordinal
parameters in the oracle y iff x ∈ L[y ].

With an appropriate coding, we can thus say that
parameter-OTMs compute all of L. In particular, there is a certain
non-halting OTM-program that writes (a code for) every element
of L on the tape.
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GENERALIZED EFFECTIVENESS
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Using our notions, we can make sense of the question whether a
set-theoretical ∀∃-statement is effective.
OTMs work on sets or ordinals. To talk about arbitrary sets, we
need a way to encode arbitrary sets as sets of ordinals.
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Let x be a set, t = tc(x) the transitive closure of x , α ∈ On and
f : α→ tc(x) a well-ordering of tc(x) in the order type α.
We define cf (x), the f -code for x , recursively as the following set
of ordinals:
cf (x) := {p(f −1(y), β) : y ∈ x ∧ β ∈ cf (y)}, where p denotes
Cantor’s ordinal pairing function.
We say that A ⊆ On ‘is a code for’ or ‘codes’ the set x if and only
if there is some f for which A = cf (x). We write rep(τ, x) to
indicate that τ codes x .
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We can now talk about OTM-computability of arbitrary functions
from V to V :
Definition: Let F : V → V be a functional class. We say that F is
OTM-computable if and only if there is an OTM-program P such
that, for every set x and every tape content τ , if rep(τ, x), then
P(τ) converges to output σ such that rep(σ,F (x)), i.e. P takes
representations of x to representations of F (x).
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By this definition, the representation of a set x will depend on the
choice of a well-ordering of tc(x). The output of a computation on
input x may hence depend on the choice of the representation of
x . This is fine as long as only the output, but not the object coded
by the output, depends on the choice of the input representation.
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This allows us to make our notion of ‘effectivity’ precise:
Definition: Let R ⊆ V × V be a construction problem (i.e. a
binary relation on V ).
Then R is effectively solvable if and only if there is an
OTM-computable solution F for R.
We call such an F a ‘canonification’ of R.
Moreover, a set-theoretical Π2-statement ∀x∃yφ(x , y) (where φ is
∆0) is effective if and only if the construction problem
{(x , y) ∈ V × V : φ(x , y)} is effectively solvable. We write Rx for
{y : (x , y) ∈ R}.
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One may now inquire whether various well-known construction
problems and Π2-statements are effective. Such questions were
studied by W. Hodges, though with a different notion of effectivity
based on Jensen and Karps primitive recursive set functions. We
note here that the two methods Hodges uses also work for our
model, which allows us to carry over results.
The following lemma corresponds to Hodges’ ‘cardinality method’.
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Lemma

Let α ∈ On, and let R ⊆ V × V be such that, for some cardinal
κ > α, there is x ∈ V such that |tc(x)| = κ, Rx 6= ∅ and
∀y ∈ Rx |y | > κ. Then no witness function for R is
OTM-computable in the parameter α.
Consequently, if R is such that there are such κ and x for every
α ∈ On, then no witness function for R is computable by a
parameter-OTM (i.e. an OTM with a fixed tape cell marked with
1).
In particular, if, for some transitive x of infinite cardinality, Rx 6= ∅
and ∀y ∈ Rx |y | > |x | then no witness function for R is
parameter-free OTM-computable.
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Some sample results.

Lemma

None of the following construction problems is effectively solvable:

1 Field to its algebraic closure

2 Linear ordering to its completions

3 Set to its (constructible) power set

4 Set to its well-orderings
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GENERALIZED EFFECTIVE REDUCIBILITY
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There are certainly various interesting questions to be asked about
the effectivity, or otherwise, of various construction problems or
Π2-statements. However, we want to take the analogy with Turing
computability a bit further: Instead of merely asking what
problems are solvable, we want to consider what
problems/statements are effectively reducible to which others in
the sense that, given access to a solution to one as an ‘oracle’, one
can effectively solve the other.
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Assume that the OTM is equipped with an extra ‘miracle tape’.
Let F be a class function taking sets or ordinals to sets of ordinals.
An miracle-OTM-program is defined like an OTM-program, but
with an extra ‘miracle’ command. When this command is carried
out, the set X of ordinals on the miracle tape is replaced by F (X ).
Canonifications can thus be used as oracles: Whenever a code for
a set x has been written on the oracle tape, the oracle command
creates a code for F (x) on the same tape.
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φ1 is OTM-effectively reducible to φ2, written φ1 ≤OTM φ2, iff
there is a program P that computes a canonification F1 of φ1

whenever a canonification F2 of φ2 is given in the ‘oracle’.
φ1 is ordinal Weihrauch (oW-) reducible to φ2, written φ1 ≤oW φ2,
if there are programs P and Q such that, whenever F2 is a
canonification of φ2, then P ◦ (F , id) ◦ Q is a canonification of φ1

(where we identify programs with the functions they compute).
φ1 is strongly ordinal Weihrauch (soW-)reducible to φ2, written
φ1 ≤soW φ2, if in the above situation, P ◦ F ◦ Q is a canonification
of φ1.
(This notion of reducibility allows us to compare arbitrary
set-theoretical statements for effective content. However,
Π2-statements seem to be the most natural candidates for such
considerations.)
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Lemma

The relations ≤OTM, ≤soW and ≤oW are transitive and reflexive.
Consequently, ≡OTM, ≡oW and ≡soW are reflexive, transitive and
symmetric, i.e. equivalence relations.
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The following is a rather natural approach for proving negative
results about ≤oW:

Lemma

Let C1, C2 be construction problems. Assume that there are a
canonification F of C2 and a transitive class-sized M |= ZF− and
some x ∈ M ∩ dom(C1) such that M is closed under F , but
{y : C1(x , y)} ∩M = ∅. Assume moreover that x is such that
there are (in V ) two mutually generic Px -generic filters G1 and G2

over M. Then C1 �oW C2.
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A case study: Generalized Weihrauch reducibility for versions of
the axiom of choice.
We consider the following versions of the axiom of choice, all of
which are provably equivalent over ZF:

1 AC (Existence of systems of representation)

2 MuC (multiple choice, finitely many choices allowed)

3 AC′ (Existence of choice functions)

4 Zorn’s lemma ZL

5 The Hausdorff maximality principle HMP

6 The well-ordering principle WO

7 Every vector space has a basis (VB)
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We also consider the (provability-wise trivial)
‘Picking Principle’ (PP): If x 6= ∅ is a set, then there is y ∈ x .

Note that it is not at all trivial to pick an ‘arbitrary element’ from
a given set. We additionally consider the following variants:

1 PP2 - the picking principle restricted to sets of size 2

2 PPfin - the picking principle restricted to finite sets.

3 MPP (multiple picking principle): ‘Every non-empty set has a
finite non-empty subset’
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AC≡oWAC′ can be seen by a simple implementation of the
equivalence proof over ZF on an OTM.

Howeover:

Theorem: WO6≤oWAC.

Proof.

(Sketch) We use Lemma 4. By a theorem of Zarach, there is a
transitive model of ZF−+AC+¬WO as a union of an ascending
chain of symmetric extensions of a transitive ground model M of
ZF−.
Starting with M = L, one can check that (if 0] exists), the
construction leads to a definable transitive class model N of
ZF−+AC such that some set A ∈ N that is non-wellorderable in N
is countable in V and moreover PA is countable and thus has two
mutually generic filters over N.
Hence the assumptions of our Lemma are satisfied and the
non-reducibility follows.
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Some more results (we assume again that 0] exists):

Theorem: 0<oWPP≡oWZL<oWAC≡AC′ <oWWO.

In fact, PP (and hence ZL) ≤oW-dominates all Π2-theorems of ZF.

Moreover, we have WO≥oW φ where φ ∈ Π2 and ZFC` φ, i.e. WO
is universal with respect to Π2-theorem of ZFC.
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We do not know where HMP lies with respect to the other
principles mentioned, expect that HMP≥oWZL. As HMP is the
combinatorial core behind ZL, we are thus in a situation that gives
some meaning to the following humoruous saying:

The axiom of choice is true, the well-ordering principle is false -
and who can tell about Zorn’s lemma?
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A Jump Operator?

A ‘jump operator’ should roughly map a problem to a natural ‘next
hardest’ problem.
It is not clear how to transfer the jump operator from Weihrauch
reducibility to ordinal Weihrauch reducibility.

Candidate: If R is a construction problem, then Rp (‘R power’) is
the same problem, but on power sets; i.e. Rp(x , y) holds if and
only if R(P(x), y) holds.

We then get WO≤oWACp by the usual proof of the implication in
ZF.

Generalized Effective Reducibility



A Jump Operator?

A ‘jump operator’ should roughly map a problem to a natural ‘next
hardest’ problem.
It is not clear how to transfer the jump operator from Weihrauch
reducibility to ordinal Weihrauch reducibility.

Candidate: If R is a construction problem, then Rp (‘R power’) is
the same problem, but on power sets; i.e. Rp(x , y) holds if and
only if R(P(x), y) holds.

We then get WO≤oWACp by the usual proof of the implication in
ZF.

Generalized Effective Reducibility



A Jump Operator?

A ‘jump operator’ should roughly map a problem to a natural ‘next
hardest’ problem.
It is not clear how to transfer the jump operator from Weihrauch
reducibility to ordinal Weihrauch reducibility.

Candidate: If R is a construction problem, then Rp (‘R power’) is
the same problem, but on power sets; i.e. Rp(x , y) holds if and
only if R(P(x), y) holds.

We then get WO≤oWACp by the usual proof of the implication in
ZF.

Generalized Effective Reducibility



A Jump Operator?

A ‘jump operator’ should roughly map a problem to a natural ‘next
hardest’ problem.
It is not clear how to transfer the jump operator from Weihrauch
reducibility to ordinal Weihrauch reducibility.

Candidate: If R is a construction problem, then Rp (‘R power’) is
the same problem, but on power sets; i.e. Rp(x , y) holds if and
only if R(P(x), y) holds.

We then get WO≤oWACp by the usual proof of the implication in
ZF.

Generalized Effective Reducibility



The following picture summarizes the situation as it is known so
far; <oW is indicated by arrows, ≤oW by dotted arrows and ≡OTM

by a dashed arrow. All indicated oW-reducibilities (whether strict
or not) are strong.

0

PP2

PPfin

PP≡soW ZL≡soW Π2(ZF)

AC≡soW AC′

WO≡soW Π2(ZFC)

AC′◦Pot

≡OTM

MPP

MuC

VB

HMP
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Effectivity and Provability

A question that has recently received attention in the classical
theory of Weihrauch reducibility is whether the reducibility of a
statement φ to another statement ψ corresponds to the provability
of the implication ψ → φ in some logical calculus; partial answers
to this have been obtained in Kuypers.
In our context, we so far have the following result:

Let φ, ψ ∈ Π2, and suppose that KP|= φ→ ψ. Then ψ ≤ φ ∧ PP.
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Indecomposability

As in the theory of classical Weihrauch-reducibility, we can say that
the Π2-statement φ is ‘oW-decomposable’ if and only if there are
Π2-statements ψ,ψ′ <oW φ such that φ is a ≤oW-least upper
bound for ψ and ψ′ in the ≤oW-ordering.

As a special case, we say that a Π2-statement φ is ‘partitionable’ if
and only if there are disjoint OTM-decidable classes X ,Y ⊆ V
such that X ∪ Y = V and such that both

R0 := {(x , y) : (x ∈ X ∧ (x , y) ∈ Rφ) ∨ (x /∈ X ∧ y = ∅)} and

R1 := {(y , z) : (y ∈ Y ∧ (y , z) ∈ Rφ) ∨ (y /∈ Y ∧ z = ∅)}
are strictly oW-reducible to Rφ.
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Conjecture: Let F : V → {0, 1} be OTM-computable. Then one
of F−1[0] and F−1[1] contains sets of every degree of

constructibility.

If this conjecture was established, we would get the following result:

WO is not partitionable.

But it currently is not. Any ideas are appreciated. :-)
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Beyond Π2

We can generalize the concept of effectivity to arbitrary ∈-formulas
by ‘ordinalizing’ approaches to the semantics of intuitionistic logic.

EXAMPLE 1: Obvious analogue of Kleene’s realizability
interpretation for set-theoretical statements using OTMs.
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Let φ, ψ be ∈-formulas, and let P be an OTM-program, α ∈ On,
a0, ..., an, b0, ..., bm sets with codes c(a0), ..., c(an), c(b0), ..., c(bm) and
R, R ′ be finite tuples.

1 If φ is quantifier-free, then (P, α) realizes φ(a0, ..., an) if and only if
φ(a0, ..., an) is true (in any transitive sets containing a0, ..., an).

2 (R,R ′) realizes (φ(a0, ..., an) ∧ ψ(b0, ..., bm)) if and only if R
realizes φ(a0, ..., an) and R ′ realizes ψ(b0, ..., bm).

3 (i ,R) realizes (φ(a0, ..., an) ∨ ψ(b0, ..., bm)) if and only if i = 0 and
R realizes φ(a0, ..., an) or i = 1 and R realizes ψ(b0, ..., bm).

4 (P, α) realizes A→ B if and only if, whenever a realizer R is given
as an input, P(R, α) computes a realizer R ′ for B.

5 (P, α) realizes ∃xφ(x , a0, ..., an) if and only if P(α, c(a0), ..., c(an))
halts with output (c(b),R) where c(b) codes a set b such that R
realizes φ(b, a0, ..., an).

6 (P, α) realizes ∀xφ(x , a0, ..., an) if and only if, for every code c(a)
for a set a, P(α, c(a), c(a0), ..., c(an)) halts with output R such
that R realizes φ(a, a0, ..., an).

7 When φ contains the free variables x1, ..., xn, then R realizes φ if
and only if R realizes ∀x1, ..., xnφ.
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Small Surprises

In this sense, all axioms of KP are realizable, but the power set axiom
and the unrestricted comprehension axiom - those usually regarded as
‘impredicative’ or ‘non-constructive’ - are not.
The axiom of choice, written in the form ‘Every family of non-empty set
has a choice function’ is OTM-realizable, and in fact trivially so: For a
realizer of ‘X is a family of non-empty sets’ is a program computing a
choice function for X .

Similarly, the replacement axiom is OTM-realizable, as ∀x ∈ X∃yφ(x , y)
means that there is a program computing the corresponding y ’s, so that
we can simply compute them all and pack them into a set.

This rather means that AC and replacement receive a very different
reading under the realizability interpretation than that their classical
interpretation should be regarded as ‘effective’.
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Realizability and Truth

Clearly, not every true statement is also OTM-realizable, as e.g.
the power set axiom shows.

However, neither is every OTM-realizable statement classically
true. The reason is that, in a sentence of the form A→ B, A
might be true while B is false, while A is not OTM-realizable, so
that A→ B is trivially OTM-realizable.
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OTM-Realizability and Intuitionistic Set Theory

All axioms of intuitionistic first-order logic (or rather, all instances
of the axiom schemes), are OTM-realizable.

Moreover, OTM-realizability is preserved by the proof calculus of
intuitionistic logic.

All axioms of KP are OTM-realizable. This holds neither for the
axioms of Aczel’s CZF nor for Friedman’s IZF.
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Examples

(1) The power set axiom

∀x∃y∀z(z ∈ y ↔ z ⊆ y)

is not OTM-realizable (see above).

Let us say that an axiom scheme A(φ1, ..., φn) is OTM-realizable if
and only if there are P and α such that P((i1, ..., in), α) computes
an OTM-realizer for A(φi1 , ..., φin ) for every tuple (i1, ..., in) of
Gödel numbers for formulas.
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The bounded comprehension scheme (comprehension restricted to
∆0-formulas) is OTM-realizable.

The unbounded comprehension scheme is not OTM-realizable:
If (P, α) would realize it, consider the statement φ(i), defined as
‘The ith OTM-program halts in the parameter α’.

Generalized Effective Reducibility



The bounded comprehension scheme (comprehension restricted to
∆0-formulas) is OTM-realizable.

The unbounded comprehension scheme is not OTM-realizable:
If (P, α) would realize it, consider the statement φ(i), defined as
‘The ith OTM-program halts in the parameter α’.

Generalized Effective Reducibility



The bounded comprehension scheme (comprehension restricted to
∆0-formulas) is OTM-realizable.

The unbounded comprehension scheme is not OTM-realizable:
If (P, α) would realize it, consider the statement φ(i), defined as
‘The ith OTM-program halts in the parameter α’.

Generalized Effective Reducibility



EXAMPLE 2: Kripke semantics for intuitionistic logic.

Let s ∈ {0, 1}∗∗, let φ(x0, ..., xn), ψ(y0, ..., ym) be ∈-formulas and
a0, ..., an, b0, ..., bm sets. We define the relation s  φ (‘s forces φ’) by
recursion as follows:

If φ is ∆0, then s  φ(a0, ..., an) if and only if a0, ..., an ∈ L[s] and
L[s] |= φ(a0, ..., an).

s  ¬φ if and only if t 6 φ for all t ⊇ s.

s  φ ∧ ψ if and only if s  φ and s  ψ.

s  φ ∨ ψ if and only if s  φ or s  ψ.

s  φ→ ψ if and only if, for all t ⊇ s, if t  φ, then t  ψ.

s  ∃xφ if and only if, s  φ(a) for some a ∈ L[s].

s  ∀xφ if and only if, for all t ⊇ s and all a ∈ L[t], we have
t  φ(a).

Generalized Effective Reducibility



EXAMPLE 2: Kripke semantics for intuitionistic logic.

Let s ∈ {0, 1}∗∗, let φ(x0, ..., xn), ψ(y0, ..., ym) be ∈-formulas and
a0, ..., an, b0, ..., bm sets. We define the relation s  φ (‘s forces φ’) by
recursion as follows:

If φ is ∆0, then s  φ(a0, ..., an) if and only if a0, ..., an ∈ L[s] and
L[s] |= φ(a0, ..., an).

s  ¬φ if and only if t 6 φ for all t ⊇ s.

s  φ ∧ ψ if and only if s  φ and s  ψ.

s  φ ∨ ψ if and only if s  φ or s  ψ.

s  φ→ ψ if and only if, for all t ⊇ s, if t  φ, then t  ψ.

s  ∃xφ if and only if, s  φ(a) for some a ∈ L[s].

s  ∀xφ if and only if, for all t ⊇ s and all a ∈ L[t], we have
t  φ(a).

Generalized Effective Reducibility



EXAMPLE 2: Kripke semantics for intuitionistic logic.

Let s ∈ {0, 1}∗∗, let φ(x0, ..., xn), ψ(y0, ..., ym) be ∈-formulas and
a0, ..., an, b0, ..., bm sets. We define the relation s  φ (‘s forces φ’) by
recursion as follows:

If φ is ∆0, then s  φ(a0, ..., an) if and only if a0, ..., an ∈ L[s] and
L[s] |= φ(a0, ..., an).

s  ¬φ if and only if t 6 φ for all t ⊇ s.

s  φ ∧ ψ if and only if s  φ and s  ψ.

s  φ ∨ ψ if and only if s  φ or s  ψ.

s  φ→ ψ if and only if, for all t ⊇ s, if t  φ, then t  ψ.

s  ∃xφ if and only if, s  φ(a) for some a ∈ L[s].

s  ∀xφ if and only if, for all t ⊇ s and all a ∈ L[t], we have
t  φ(a).

Generalized Effective Reducibility



EXAMPLE 2: Kripke semantics for intuitionistic logic.

Let s ∈ {0, 1}∗∗, let φ(x0, ..., xn), ψ(y0, ..., ym) be ∈-formulas and
a0, ..., an, b0, ..., bm sets. We define the relation s  φ (‘s forces φ’) by
recursion as follows:

If φ is ∆0, then s  φ(a0, ..., an) if and only if a0, ..., an ∈ L[s] and
L[s] |= φ(a0, ..., an).

s  ¬φ if and only if t 6 φ for all t ⊇ s.

s  φ ∧ ψ if and only if s  φ and s  ψ.

s  φ ∨ ψ if and only if s  φ or s  ψ.

s  φ→ ψ if and only if, for all t ⊇ s, if t  φ, then t  ψ.

s  ∃xφ if and only if, s  φ(a) for some a ∈ L[s].

s  ∀xφ if and only if, for all t ⊇ s and all a ∈ L[t], we have
t  φ(a).

Generalized Effective Reducibility



EXAMPLE 2: Kripke semantics for intuitionistic logic.

Let s ∈ {0, 1}∗∗, let φ(x0, ..., xn), ψ(y0, ..., ym) be ∈-formulas and
a0, ..., an, b0, ..., bm sets. We define the relation s  φ (‘s forces φ’) by
recursion as follows:

If φ is ∆0, then s  φ(a0, ..., an) if and only if a0, ..., an ∈ L[s] and
L[s] |= φ(a0, ..., an).

s  ¬φ if and only if t 6 φ for all t ⊇ s.

s  φ ∧ ψ if and only if s  φ and s  ψ.

s  φ ∨ ψ if and only if s  φ or s  ψ.

s  φ→ ψ if and only if, for all t ⊇ s, if t  φ, then t  ψ.

s  ∃xφ if and only if, s  φ(a) for some a ∈ L[s].

s  ∀xφ if and only if, for all t ⊇ s and all a ∈ L[t], we have
t  φ(a).

Generalized Effective Reducibility



EXAMPLE 2: Kripke semantics for intuitionistic logic.

Let s ∈ {0, 1}∗∗, let φ(x0, ..., xn), ψ(y0, ..., ym) be ∈-formulas and
a0, ..., an, b0, ..., bm sets. We define the relation s  φ (‘s forces φ’) by
recursion as follows:

If φ is ∆0, then s  φ(a0, ..., an) if and only if a0, ..., an ∈ L[s] and
L[s] |= φ(a0, ..., an).

s  ¬φ if and only if t 6 φ for all t ⊇ s.

s  φ ∧ ψ if and only if s  φ and s  ψ.

s  φ ∨ ψ if and only if s  φ or s  ψ.

s  φ→ ψ if and only if, for all t ⊇ s, if t  φ, then t  ψ.

s  ∃xφ if and only if, s  φ(a) for some a ∈ L[s].

s  ∀xφ if and only if, for all t ⊇ s and all a ∈ L[t], we have
t  φ(a).

Generalized Effective Reducibility



EXAMPLE 2: Kripke semantics for intuitionistic logic.

Let s ∈ {0, 1}∗∗, let φ(x0, ..., xn), ψ(y0, ..., ym) be ∈-formulas and
a0, ..., an, b0, ..., bm sets. We define the relation s  φ (‘s forces φ’) by
recursion as follows:

If φ is ∆0, then s  φ(a0, ..., an) if and only if a0, ..., an ∈ L[s] and
L[s] |= φ(a0, ..., an).

s  ¬φ if and only if t 6 φ for all t ⊇ s.

s  φ ∧ ψ if and only if s  φ and s  ψ.

s  φ ∨ ψ if and only if s  φ or s  ψ.

s  φ→ ψ if and only if, for all t ⊇ s, if t  φ, then t  ψ.

s  ∃xφ if and only if, s  φ(a) for some a ∈ L[s].

s  ∀xφ if and only if, for all t ⊇ s and all a ∈ L[t], we have
t  φ(a).

Generalized Effective Reducibility



EXAMPLE 2: Kripke semantics for intuitionistic logic.

Let s ∈ {0, 1}∗∗, let φ(x0, ..., xn), ψ(y0, ..., ym) be ∈-formulas and
a0, ..., an, b0, ..., bm sets. We define the relation s  φ (‘s forces φ’) by
recursion as follows:

If φ is ∆0, then s  φ(a0, ..., an) if and only if a0, ..., an ∈ L[s] and
L[s] |= φ(a0, ..., an).

s  ¬φ if and only if t 6 φ for all t ⊇ s.

s  φ ∧ ψ if and only if s  φ and s  ψ.

s  φ ∨ ψ if and only if s  φ or s  ψ.

s  φ→ ψ if and only if, for all t ⊇ s, if t  φ, then t  ψ.

s  ∃xφ if and only if, s  φ(a) for some a ∈ L[s].

s  ∀xφ if and only if, for all t ⊇ s and all a ∈ L[t], we have
t  φ(a).

Generalized Effective Reducibility



EXAMPLE 2: Kripke semantics for intuitionistic logic.

Let s ∈ {0, 1}∗∗, let φ(x0, ..., xn), ψ(y0, ..., ym) be ∈-formulas and
a0, ..., an, b0, ..., bm sets. We define the relation s  φ (‘s forces φ’) by
recursion as follows:

If φ is ∆0, then s  φ(a0, ..., an) if and only if a0, ..., an ∈ L[s] and
L[s] |= φ(a0, ..., an).

s  ¬φ if and only if t 6 φ for all t ⊇ s.

s  φ ∧ ψ if and only if s  φ and s  ψ.

s  φ ∨ ψ if and only if s  φ or s  ψ.

s  φ→ ψ if and only if, for all t ⊇ s, if t  φ, then t  ψ.

s  ∃xφ if and only if, s  φ(a) for some a ∈ L[s].

s  ∀xφ if and only if, for all t ⊇ s and all a ∈ L[t], we have
t  φ(a).

Generalized Effective Reducibility



In this sense, all axioms of KP are forced by ∅, while the power set
axiom and some instances of unbounded comprehension cannot be
forced by any string.

Since all sets are constructed, they are naturally well-ordered by
their construction ordering, and ∅ WO.
(Picture: Realizability semantics: Sets are ‘given’, the ideal agent
gets to know them effectively;
Kripke semantics: Sets are ‘constructed’ relative to a ‘free choice
sequence’, s  φ means that, on the basis of having constructed s
alone, the agent can be sure that φ will hold in the end.

QUESTION: Axiomatize (under appropriate largeness assumptions
on V ) those ∈-sentences that are forced by ∅/by any string s.
(These would correspond to those sentences that the agent can
always be sure off and those that he can ‘come to know’). The
background logic must be intuitionistic, as e.g. both notions
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Further Work

Study general algebra, logic, analysis, topology,... with respect
to effectivity/effective reducibility.

Motivate and develop other notions and see how they
compare (Shore, Hodges, parameter-OTMs).

Ordinal versions of the Curry-Howards correspondence?

Relations to intuitionistic set theory?

Allow set-sized parameters (equivalently, infinite programs)?
(Recently introduced by E. Lewis in his Master’s thesis.)
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Thank you!
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